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A Transient Solution for Domain Wall Motion *

H. C. Bourne, Jr. and D.S. Bartran

Abstract - An analytic solution of transient wall motion in a bulk ferro-

't magnetic material is obtained from the dynamic torque equations with a Gilbert ,

damping term. The steady state solution reduces to previously obtained, well
x\ . _ /-'

known solutions.

Introduction • —-

A one dimensional Bloch wall is assumed to exist in a bulk specimen of .

ferromagnetic material described by a uniaxial anisotropy constant K, an ex-

change constant A, and a saturation magnetization M. With the coordinate sy§tem

shown in Fig. 1 the following torque equations may be derived from the vector

equation of motion containing a viscous damping parameter a:

M c 1* n ft P\ fl fyM 9 p* r n 2 rt 2
22. + H_i sin^e -2^ =.H M sin 8 cos cp + 2A sin 6 v cp

Y bt Y 3t ' y

+ 4A sin 9 cos 8 (V0 • Vcp), (la)

M sin 6 dcp aM 38 . . u ™ • Q—^ - — •^— = - E H cos 8 sin co + HM sin 8
Y Bt Y dt y z

2 2
'+ 2K..sin 0 cos 8 + 2A sin 8 cos 8(Vcp) - 2A V 0. (lb)

The fields H and H permit the introduction of stray and applied fields
Y z

and Y i-s tne gyromagnetic ratio. The z-axis is the easy direction. In the

absence of an applied field in. .the hard or y-direction

M
H = - — sin 8 sin cp .
y v-o '
The following trial functions are introduced :

2
co ^ f ( y ) , ~ = C. sin 9, |^ = C. sin 9, ^-1 = CQ

2 sin 8 cos 8 ,
° dy By

in which cp, GI , and C may be functions of time but not of y. Substituting these

functions into eqs. 1 and equating coefficients of sin 8 and-sin.8 cos 9 yields:

--'•This work was supported in part by the National Aeronautics and Space Administra-

tion under Research Grant NGR-44-006-001 and by the National Science Foundation

under Grant GK3827.

https://ntrs.nasa.gov/search.jsp?R=19720018900 2018-07-24T21:20:53+00:00Z



. - 2 - • • - - . . ' • • • , .

C, + a = - sin cp cos cp " (2a),,- i at v,o * * , . . .

|? " « c! - V Hz . (2b)

0 = — sin cp + 1L - C C. , (2c)
LJt K ^ **

in which IL = 2K/M, C.= 2A/M, and H is the applied field.
K A Z

Approximate Solution

An approximate solution is obtained if the additional assumption is made

that cp , the angle associated with the component of M perpendicular to the

wall plane, is small. From eqs. 2a and 2b with sin cp =* <p and cos cp "= 1, a

linear differential equation in .cp results, and the solution for a step func-

tion applied field is '•'•

M- H
o z

and'

., u >,
Cl = " a V Hz - ~.

 (1 ' e

From eq. 2c, C_ is obtained as

/CA*
M

Finally, the velocity is obtained from v = dy/dt =» -(o9/Bt)/(d9/ay) = - C-/C2

as ^M 9
_— . — Q? ™ i "

•yH i u n

v = — . ( A K 1 - e
0?

with h = . p , - H /M , and h =.g, H /M ,
Z D Z K O K

2and a < < 1.

The steady-state velocity corresponds to the solution previously obtained

2
by Feldtkeller [1]. The effective time constant for a = 0.01 and M = 1.0 w/m

is 0.5 nanosecond. The transient behavior of C_ 'corresponds to the wall
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contraction that takes place as the wall accelerates. C« may also be dis-

played as a function of velocity.

[A/K -

For small v or small H , the wall contraction is negligible and the velocity
z

increases to the final value as a simple exponential.

"Exact" Solution

Eqs. 2 may also be integrated directly to yield :

. 2 AB(1 - e"&t)2
sm cp = - j-r— 5 - L - ToTT

(A - Be PV + AB(1 - e PV'

and

(AB)fe(l - e"pt)(A - Be"pt)
sin cp cos cp = -* — f \ 2 - " - .Bt 2 »

(A - Be PV + AB(1 - e PV
in which

2h _ i . 2h 0 i M

A - i -Mi - (-̂)V , p = ̂r [1 - <-> ^ ̂  '

B.I. [1- ()] • z = ̂ o Z '

The time dependence of the velocity constant, the structure constant, and the

velocity are given by . .

1 r YM . -,Cn = -z [f orvH - — sin cp cos cpj ,
1 , . / z u,1+cv po

2
For 2h /a < < 1 but not (h /a) < < h with h, =(j,H,/M,^the solution reduces

Z Z K ' iC O KP

to the previous approximate solution. The steady-state velocity is given by

YH i i 2h 9 i'"
v = -p ..

which is the Walker solution [2] discussed in detail by Schlb'mann [3], [4}.

The solution is limited by 2h /a = 1 corresponding to. cp = 45°- and
i Z

v| = Y C~)*(2 + 4h )•* .
h = or/2 ^o k

2 .
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Note that the effective damping constant, £ , in the transient solution is

zero at this point although the overall time response remains finite. The

peak velocity and the corresponding applied field are given by

,2Av|r,, . x* . |,v , = Y(—) ['(I + h, ) - hi J»pk \i . k k

s • , i 'i • i i
hj = «"..hj(l + hk)

4[(l + hk)
8 - h*] .

v = v 1pk

The motion predicted by this "exact" solution for a planar wall is well-

behaved for 2h la < 1. Schlbmann [4] points out that there may be reason to
Z ™"

doubt that the solution is valid for fields larger than hi.
Z v = v ,pk

Slonczewski [5] reasons that if the wall is described by a negative differen-

tial mobility then instabilities characterizerized by corrugated variations

along the wall may develop and the assumption of a planar wall is violated.

The "exact" transient solution predicts that velocity changes in the negative

differential mobility region are characterized by long time constants possibly

requiring that the instabilities develop slowly. Experimental evidence in per-

malloy films indicates that a corrugated structure is much more likely to appear

with relatively long pulses and that the wall remains planar for relatively

short pulses.

A family of curves of the steady-state solution is shown in Fig. 2 for

various h. and normalized drive field, 2h /a . A corresponding transient
j£ • . Z

response for a particular h and various drives is shown in Fig. 3. Notice

that overshoots in the velocity are predicted for small h, and large drives.

Summary

Analytic solutions are found for transient domain wall velocity in bulk uni-

axial ferromagnetic materials excited by a step function easy-axis field. The

solutions reduce to previously obtained steady-state solutions. The response

time(s) associated with wall contraction and velocity is of the order of nano-

seconds for permalloy materials but may be much longer for ortho-ferrite materials.



References

1. E. Feldtkeller, "Magnetic Domain Wall Dynamics", Phys. Stat. Sol.

27, pp 161-170, 1968.

2. L. R. Walker quoted by J. F. Dillon, "Magnetism", vol. Ill edited

by G. Rado and H. Suhl, Academic Press, pp 450-453, 1963.

3. E. Schlomann, Appl. Phys. Letters 19, 274, 1971.

4. E. Schlomann, Paper 3E-7, Magnetism Conference, Chicago, Nov. 1971.

5. J. C. Slonczewski, "Dynamics of Magnetic Domain Walls", IBM Report

RC 3534, Watson Research Center, Yorktown Heights, N.Y., Sept. 1971,



Figure Captions

Fig. 1. Coordinate system.

Fig. 2. Normalized velocity versus normalized applied field from

the exact steady-state solution.

Fig. 3. Normalized velocity versus normalized time from the exact theory with

normalized drive as a parameter. . - ' .
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